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synopsis 
This work used a conventional thermomechanical analyzer (TMA) to measure the 

depth of indentation a t  room temperature of elastomers and Finkin’s equation to  
calculate Young’s moduli of elastomers, which have been measured by Drutowski, from 
the radius of contact of an indentor on thin sheets of sample. Data obtained from the 
TMA are compared with those measured by radius of contact and Hertz contact theory 
and are found in good agreement. Measurements of Young’s modulus as a function of 
temperature at different heating rates by TMA were made for an acrylic elastomer. 
The results are compared with theory and the deviations from theory are discussed. 

INTRODUCTION 

Young’s moduli of polymeric materials can be measured by a number of 
methods: Nielsen’ in 1962 listed a table for calculation of Young’s modulus 
from the deformations of beams. Young’s modulus can also be deter- 
mined from shear and bulk moduli by shear and torsional analy~isl-~ and 
compressibility testing. Vibrating methods have been used by Joshis 
and BuchdahP to measure Young’s modulus at  low temperatures. Pezzin 
and Zinelli’ followed ASTM D638 to determine Young’s modulus of poly- 
(vinyl chloride) (PVC) by use of an Instron tensile tester. Young’s 
moduli of PVC fractions were obtained from the initial slopes of stress- 
strain curves. Moduli of natural rubbers crosslinked by dicumyl peroxide 
were studied by Wood et a l .8~~ as a function of time, temperature, and frac- 
tion of crosslinking agent in the compressive mode following ASTM 
D1415-56T, which is a commonly used way of evaluating elastomer elas- 
ticity. 

The equation derived by HertzlOpll was used to calculate Young’s modulus 
from the indentation of a rigid ball indentor on sample sheets. Drutowski12 
measured Young’s moduli of elastomers by optical measurement of contact 
radius between a transparent spherical indentor and the sample based on 
Hertzian contact analysis. A critical comparison of this method was 
made with conventional hardness tests. Waters13 has found a universal 
function in terms of the radio of thickness of sample to the actual radius 
of contact to calculate Young’s moduli for thin sheets of rubber. This 
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function is independent of ball size, applied force, and Young’s modulus of 
the rubber. A mathematical expression was derived by Jopling and Pith14 
for the measurement of the elastic moduli of swollen gelatin from the in- 
dentation on thin films by a flat-ended plunger. Finkin16 recently de- 
veloped an expression for Young’s moduli in terms of the depth of indenta- 
tion or contact radius from Vorovich and Ustinov’s solution16 for the in- 
dentation of rubber sheet by a spherical indentor. The expressions were 
verified by use of the published and unpublished data of Drutowski and 
Waters. 

EXPERIMENTAL 

Samples used for this experiment were essentially the same type of elasto- 
mers used by Drutowski12 and were supplied by International Packing 
Corp., Bristol, New Hampshire. The sample size was approximately 
15 X 15 X 0.2 cm. Measurements were made using a du Pont 900 dif- 
ferential thermal analyzer combined with a du Pont 941 thermomechanical 
analyzer.” Figure 1 shows a systematic description of the thermomechan- 
ical analyzer (TMA). The probe used for the TMA was a quartz rod, 
radius = 0.123 cm, with a hemispherical end. Samples 0.5 X 0.5 cm were 
cut from the sheets and placed under the end of the probe. The probe 
was adjusted to just touch the surface of the sample using the probe 
position controller. A load of constant weight was applied to the probe, 
and the displacement of the probe was recorded as a function of time at  
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Fig. 1. Systematic description of the thermomechanical analyzer. 
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room temperature. 
tested. 

For comparison with other results, various loads were 

RESULTS AND PRECISION 

Table I shows Young’s moduli of acrylic and silicone elastomers with the 
per cent standard deviation and the precision of measurement at  each 
load. Young’s modulus a t  each load was calculated from the depth of 
indentation at 2 min after placing the load using Finkin’s equation:15 

E =  3PR(1 4H3 - “I [ ~ ) ” ’ +  0.252 G) + 0.1588 g)’” 
+ 0.2245 ($)’ + 0.3069 g )  + 0.2980 (1) 

where E is Young’s modulus, P is normal load, R is the radius of the spheri- 
cally tipped indentor, H is the sheet thickness, d is the depth of indentor 
penetration, and y is Poisson’s ratio of the elastic layer (which for rubber 
is approximately equal to 0.5). Indentations on four positions of each 
sample were made to calculate the precision of measurement at each load 
as shown in column 4 of Table I. The lower precision at lower load is 
likely due to the manual error of the adjustment of zero displacement at 
no load on the probe and the buckling between sample and the base of 
sample holder. Young’s moduli of acrylic and silicone elastomers in 
columns 2 and 3 at different loads were obtained from the indentation of 
different samples cut from four positions of the 6 in. X 6 in. sheets. The 
higher standard deviations at lower loads are again due to the manual 
error of measurement. Table I1 gives the comparison of Young’s modulus 
measured from the depth of indentation with TMA from this work, ET, 
from contact radius12,15 ER and from Hertz contact E ,  for acrylic 
and silicone elastomers. The results are in good agreement. The values 
of E ,  measured a t  loads of 50 and 100 g are very close to Drutowski’s 
nominal experimental values, which are given at the top of the table. 
The deviations of the values of ET at lower loads from the nominal experi- 
mental ones are likely due to the measurement error cited previously. 

TABLE I 
Young’s Modulus Measured by TMA 

Young’s modulus El lb/in.l 

Load P, g 

100 
50 
20 
10 
5 
2 

- 

Acrylic elastomer Silicone elastomer 

547 f 4.@Y% 
533 f 5.05% 

1591 f 3.670 
1514 f 2.3470 

4 8 0 f  5 .3% 1408 f 4.28% 
433 f 8.20/, 1329 f 10.5% 
447 f 8.1% 1 2 5 3 f  7.02% 
383 f 11.7’% 1099 f 8.4370 

Precision, ’% 
1.29 
3.94 
7.89 

- 

13.2 
21.4 
35.7 
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TABLE I1 
Comparison of Young’s Modulus E(lb/in.l) Measured from the Depth of Penetration 

with TMA (ET),  from Contact Radius (ER),” and from Hertz Contact Theory 
( E H ) ~  for Acrylic and Silicone Elastomers 

Acrylic elastomer ( E  = 510)c Silicone elastomer ( E  = 1600)~ 

Load, g ET ER EH ET ER EH 

2 383 - - 1099 - - 
5 447 - - - - 1253 

10 443 436 442 1329 1526 1521 
20 480 489 499 1408 1642 1653 
50 533 515 538 1514 1623 1654 

100 547 550 590 1591 1560 1610 

a From refs. 12 and 15. 
b From refs. 11 and 15. 
c Drutowski’s (ref. 12) nominal experimental values of E .  

Higher loads were not tested because the measurement would be off the 
scale of the instrument and the implicit limitation of eq. (1) that the radius 
of contact should not be greater than the thickness of the ~ample.~5.~6 It 
can be concluded that for a fixed thickness and hardness of sample and a 
specified range of measurement, there will be an optimum applied load to 
obtain the most accurate value of Young’s modulus by the indentation 
method. For this work the value appears to be 50-100 g. 

Young’s moduli of the elastomers were measured with relaxation method 
by an Instron tensile tester, and the values of E for the two elastomers were 
found to be about 1.7 times the nominal values. The deviations may be 
due to the error in measuring the cross-sectional area of 6he sample and 
the inaccuracy of the method. Young’s moduli have also been measured 
from the indentation of a flat-ended indentor using the equation derived 
by Jopling and Pitts.14 The values of E calculated were about 1.6 times 
the nominal value of acrylic elastomer and 1.3 times of nominal value of 
silicone elastomer under a 50-g load. The values of E measured with a 
100-g load were much higher than the nominal values, as the indentation is 
less than twice that of the indentation with 50 g. The equation derived 
by Jopling and Pitts14 requires that the indentation should be proportional 
to the applied load for the same value of Young’s modulus of an elastomer. 
The deviations may be due to the fact that the equation derived by Jopling 
and Pitts is for very thin films (0.0127 cm to 0.0317 cm), so that it is inap- 
plicable to our case. Lebedev and Ufliand20 have developed a solution to 
express the displacement using a flat-ended indentor in terms of load, 
Young’s modulus, radius of the indentor, and the thickness of sa.mple which 
is close to our case. Young’s modulus can be obtained from the numerical 
solution of a Fredholm integral equation with a continuous symmetrical 
kernal. The explicit expression of Young’s modulus as a function of load, 
thickness of sample, and radius of indentor is, however, not available. 
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MEASUREMENTS AS A FUNCTION OF TEMPERATURE 

Young’s modulus can be measured as a function of temperature quickly 
and conveniently by TMA. The indentation as a function of temperature 
was measured either stepwise or by continuous temperature programming 
a t  various heating rates. For stepwise measurements, the indentation of 
the sample was measured first a t  room temperature after applying a load 
of 100 g overnight. The temperature of the sample was then raised and 
the indentation was recorded when no detectable change in indentation with 
time was observed, usually 1 hr. This procedure was repeated for several 
higher temperatures; and the indentations, after correcting for thermal 
expansion, were then used to calculate Young’s modulus with eq. (1) .  

Note that the measurement of Young’s modulus as a function of tempera- 
ture is more conveniently made at an equilibrium state rather than a t  a 
specified time. Equation (1) was derived for equilibrium conditions. l6 

In the programmed temperature case, the indentation was made a t  room 
temperature overnight as in the first caae. The indentations were then 
recorded as a function of temperature a t  a selected heating rate. A sam- 
ple of the same size with no load on it was run as a function of temperature 
a t  the same heating rate to determine the thermal expansion coefficient. 
By use of varying heating rates, Young’s moduli can be determined con- 
veniently as a function of temperature. 

RESULTS AND DISCUSSION 

To make a significant comparison of Young’s modulus as a function 
of temperature a t  different heating rates, the ratio of measured Young’s 
modulus to that a t  a selected reference temperature was used. Figure 2 
shows ratios of Young’s modulus as a function of temperature using a refer- 
ence temperature of 25OC a t  various heating rates. Figures 3 and 4 
show the same type of plot as Figure 2 using a slightly different experi- 
mental procedure. For results given in Figure 3, the sample was placed 
under a load of 100 g a t  room temperature overnight and then cooled to 
Oo, followed by temperature programming a t  various heating rates. Figure 
4 shows results obtained by the same procedure, except that the sample 
was initially cooled to - 125°C. 

Kinetic theory*S2l for rubber predicts that the Young’s modulus of ideal 
rubber, E ,  as a function of temperature T will be given by 

3pRT 
Mc 

E = -  (1 - 2MC/A-7,) 

where p is the density of the rubber, R is the gas constant, M ,  is the molec- 
ular weight between crosslinking, and ATn is the number-average molecular 
weight of the rubber. The proportionality, providing the density and 
M ,  are constant with temperature, of Young’s modulus E versus tempera- 
ture T has been confirmed by for natural rubber crosslinked by 
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Fig. 2. Plot of Young’s modulus vs. temperature with starting temperature of 25’C. 
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1.C 
Fig. 3. Plot of Young’s modulus vs. temperature with starting temperature of 0°C. 
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Fig. 4. Plot of Young's modulus vs. temperature with starting temperature of - 125OC. 

dicumyl peroxide and by V e r v l ~ e t ~ ~  for crosslinked elastomers. Plots of 
E versus T calculated from eq. (2) with 25°C as the reference temperature 
are shown on Figures 2, 3, and 4, respectively. The density has been cal- 
culated from the thermal expansion coefficient, 1.504 X 10-40C-1, for the 
acrylic elastomer used in this work, and M ,  was assumed to be constant. 
From the three figures, it appears that the results with a zero heating rate, 
i.e., temperature increasing stepwise, follow eq. (2) very well up to 75°C. 
The deviation from eq. (2) at  higher temperatures may be due to the amine 
curing agent in the elastomer dissociating from the network structure. 
Thus, the network structure is destroyed and the molecular weight between 
crosslinkage, M,, is not constant. As shown in the figures, the greater 
deviations of Young's modulus at continuous heating rates is due to lack 
of time for the molecular chains to relax to the equilibrium state. The 
maximum point of the curves is the temperature at which the retractive 
force is compensated by the softening of the sample. This temperature 
increases with heating rate, possibly owing to the longer time for relaxation 
at  lower heating rates. 

The higher deviations from eq. (2) at  higher heating rate in the low-tem- 
perature region are due to lack of time to achieve the equilibrium state. 
The ratios change appreciably when the starting temperature is changed. 
The temperature range at  which the deviation from eq. @) is observed 
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at higher heating rates is higher than that of lower ones as the starting 
temperature is lowered, as shown in Figures 3 and 4, starting at  0°C and 
-125”C, respectively. Note that the plot of Figure 4 starts a t  0°C 
because eq. (1) is inapplicable for calculating Young’s modulus a t  tempera- 
ture lower than the glass transition temperature (- 10°C for the elastomer 
used). 

The use of TMA to measure Young’s modulus of elastomers as a function 
of temperature and time is a rapid and convenient method and has a major 
advantage in that only a small amount of sample is needed. The degree 
of crosslinking of the elastomers can also be determined according to eq. 
(2) provided Youngss modulus is known by other means. The accuracy 
of using a TMA to determine Young’s modulus could be improved if the 
output of the current thermal analyzer could be amplified further or by 
use of a digital readout recorder to read the small change in indentation as 
the temperature is changing. It may also be desirable to use a flat-ended 
plunger instead of the hemispherical-ended one as the equation which 
relates Young’s modulus to indentation variables is available. The slip of 
the plunger as temperature is raised is more easily eliminated with a flat- 
ended indentor. 

A portion of this work was supported by the Public Health Service through Grant 
Thanks are also given to  the Computer Center at the University of No. DE-03444-02. 

Connecticut for providing time to  calculate Young’s modulus. 
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